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The inhomogeneous Bethe lattice (IBL) is defined and studied. It is used to study
the random neighbor for forest fire model, and we show that it is more realistic
than the Bethe lattice, and gives large probability for the subcritical case

1. BASIC CONCEPTS

Percolation (Stauffer and Aharony, 1992) on the Bethe lattice (Cayley

tree) is an important example of an exactly solvable problem. It also has

many applications. In all such studies the number of nearest neighbors of

any site (the coordination number) is fixed. It is denoted by z, for example,

in the study of the immune system (Ahmed and Abdusalam, 1994). Some

applications require that z changes from one site to another, i.e., z becomes
zi , where i labels the site. We call this lattice the Inhomogeneous Bethe

lattice (IBL).

To evaluate the critical concentration pc it is noticed that the number of

branches outgoing from site i is zi 2 1. It is assumed that there is one

incoming branch to site i. Hence the average number of open paths from site

i is p(zi 2 1). Thus, in order for site i to belong to an infinite cluster, the
quantity p(zi 2 1) should exceed unity; therefore the critical concentration is

pc 5 max
i 1 1

zi 2 1 2 (1)

To evaluate the probability that an occupied site belongs to an infinite cluster

P, let site j be the nearest neighbor to site i and let Q j be the probability that

site j does not belong to an infinite cluster along a given branch; then
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Q j 5 1 2 p 1 p &
k Þ i

Qk (2)

where p is the probability that a site is occupied and k runs over the set of

all nearest neighbors of j other than i. The quantity p 2 P is the probability

that a site will be occupied but does not belong to an infinite cluster; hence

p 2 P 5 p &
j

Qj (3)

Equations (2) and (3) determine P.
It is to be noticed that when zi 5 z the familiar equations for p are

regained, i.e.,

Q 5 1 2 p 1 pQz 2 1, p 2 P 5 pQz (4)

2. FOREST FIRE MODELS

Forest fire models are defined on d-dimensional hypercubic lattices of

linear size L. Each lattice site is either empty, a tree, or a burning tree. Most

forest fire models can be described by the following simple rules, which are
used at each time step in order to update the system in parallel:

1. A burning tree becomes an empty site.

2. Trees grow with probability p from empty sites.

3. A green tree becomes a burning tree with probability (1 2 g) if at

least one next nearest neighbor is burning.
4. A green tree becomes a burning tree with probability f ¿ 1 if no

nearest neighbor is burning.

Taking g 5 0 in (3) and neglecting (4), one has the model of Bak et
al. (1990), which is noncritical and exhibits a steady state which is a succession

of fire fronts with fractal dimension D 5 1 (Grassberger and Kantz, 1991)
A modification of this model is obtained by introducing the immunity g (0 ,
g # 1) in (3)), which is the probability that a tree is not ignited although

one of its neighbors is burning (Drossel and Schwable, 1993). This forest

fire model with immune trees exhibits interesting fluctuating percolation

behavior. Another model proposed by Drossel and Schwable (1992) takes

g 5 0 in (3) and in the limit f ¿ 1, f/p ® 0 shows self-organized criticality
(SOC) behavior in nonconservative systems (Christensen et al., 1993). In a

recent variant of the forest fire model, which also exhibits SOC, it is assumed

that sparks are dropped at random and if they fall on a tree, the whole cluster

of sites connected to it burns (Henley, 1993).
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3. MEAN-FIELD THEORY OF THE MODEL

We study in detail the mean-field theory of the model proposed by

Drossel and Schwable (1992) or, more precisely, a random neighbor version
of the forest fire model: We disregard the lattice geometry and consider

instead an ensemble of N sites on which trees may grow. The system evolves

according to the dynamical rules defined above, but at each time step every

site with a burning tree is assigned Z neighbor sites to which the fire will spread

to the extent that there are trees on these sites. This neighbor relationship is
oriented: fire may spread only one way through it. Neighbor sites are chosen

at random from the ensemble and rechosen anew at every time step. The

parameter Z is called the coordination number and is identified with 2d 2
1 when the random neighbor model is used as an approximation to the system

on a hypercubic lattice. Let r e( t ), r t( t ), and r f( t ) denote respectively the

densities of empty sites, trees, and burning trees at time t . The mean-field
equations for the forest fire model are the rate equations for these densities

supplemented with the normalization constraint. For the small values of

the lightning rate f that we will consider, we may assumeÐ and later find

correctÐ that the number of burning trees at any given time is small compared

to the total number of trees, i.e., N r f & N r t. With this assumption, no tree

is ignited by more than one burning tree, and the rate equations read

r e( t 1 1) 5 (1 2 p) r e( t ) 1 r f ( t )

r t( t 1 1) 5 [1 2 f 2 Z r f ( t )] r t( t ) 1 p r e( t ) (5)

r f ( t 1 1) 5 [ f 1 Z r f ( t )] r t( t )

1 5 r e( t ) 1 r t( t ) 1 r j ( t )

and then the three densities change during one time step according to the

following equations:

D r e( t ) 5 r f ( t ) 2 p r e( t )

D r t( t ) 5 p r e( t ) 2 [ f 1 Z r f ( t )] r t( t ) (6)

D r f ( t ) 5 ( f 1 Z r f ( t )) r e( t ) 2 r f ( t )

The time evolution of these equations has an attractive fixed point. Its exis-

tence and stability may be understood as follows: With many trees in the

forest, fire will propagate easily, and more trees will disapper than are grown.
With few trees in the forest, fire will propagate with difficulty, die out fast,

and more trees will grow than disappear. While oscillations between these

two situations certainly occur locally in finite dimensions, the mean-field

equations have an attractive fixed point, and consequently the system will
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reach a stationary state, i.e., the three densities do not change in time. Setting

D r t( t ) 5 D r e( t ) 5 D r f ( t ) 5 0 in equation (6), we obtain

r f ( t ) 5 p r e( t )

p r e( t ) 5 ( f 1 Z r f ( t )) r t( t ) (7)

r f ( t ) 5 ( f 1 Z r f ( t )) r t( t )

1 5 r f ( t ) 1 r t( t ) 1 r e( t )

Using equation (7), one can easily find the density of trees as

r t 5
Z 1 1 1 K 6 ! (Z 2 1)2 1 2(Z 1 1)K 1 K 2

2Z
(8)

where

K 5
f (1 1 p)

p

Only the solution with the minus sign is meaningful, the other giving

r t . 1, which is impossible (0 # r t # 1).

Expanding r t by Taylor series in K, we get

r t 5
1

Z
2

1

Z 2 2 Z
K 1 O (K 2) (9)

The forest fire model is described as a random branching process as

follows: One burning tree can ignite form 0 to Z other trees, depending on

how many of its Z neighbor sites are occupied by trees. By assumption, the
fire is so sparse at any time that no tree is ignited by more than one burning

tree. Consequently, a space-time map of a forest fire has the topology of a

tree (Bethe lattice), each node representing a burning tree, and branches from

such a node representing the spreading of the fire to neighbor sites. Since

the fire can spread from one burning tree to any number b of trees between
0 and Z, the average number of trees ignited by one burning tree is given

by using the binomial distribution and equation (9) as follows:

^ b & 5 o
Z

b 5 0
b 1 Zb 2 r b

t (1 2 r t)
Z 2 b

5 Z r t

5 1 2
1

Z 2 1
K 1 ZO(K 2) (10)

where, in the first identity, we have used that a randomly chosen site contains

a tree with probability r t. Since K is proportional to f, in the limit of f ® 0,
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^ b & ® 1. In this limit the mean-field theory of the forest fire model will be

nothing but a critical branching processÐ critical because ^ b & 5 1 means a

burning tree on the average ignites exactly one tree. Thus the fire continues
forever, on the average. If K Þ 0, then ^ b & , 1 and the system is subcritical,

and a fire will die out in a finite time.

Let the geometry of the model be given by an underlying lattice of finite

dimension d. Then the fire will self-interact, resulting in different critical

exponents, and the dynamical process might induce correlations between

sites. We assume that sites are not correlated, and that the lattice has an
average density of trees r t . Then we have a percolation problem: A fire will

burn exactly the cluster of trees in which it was started, and the known

cluster-size distribution of the percolation problem is the mean field estimate

for the size distribution for forest fires in finite dimensions. In particular, the

known exponents of percolation theory are our mean-field estimates for

exponents in the forest fire model.
The density of trees can be derived self-consistently using the knowledge

of the exponents from percolation theory: In a statistically stationary state

the rate of flow into the system (the rate of growth) equals the rate of flow

out of the system (the rate of burning), that is, if ^ s & denotes the average size

of a forest fire initiated by lightning, then

p r e L d 5 ^ s & f r tL
d (11)

and using r e 5 1 2 r t , we have

^ s & 5
p

f

1 2 r t

r t

} | pc 2 r t | 2 g (12)

since the average cluster in percolation theory diverges with the exponent g .

This gives an estimate of the density of trees as a function of p and f. However,

we can also estimate g using the measured value of r t. For this estimate to

be consistent, the correlation length in the percolation problem should be

much smaller than the lattice size, so that fluctuations in r t are negligible.

Since the fractal dimension of clusters in the percolation problem is smaller
than the embeding dimension when d $ 2, we expect that the density fluctua-

tions indeed will be unimportant.

The coordination number Z is identified with 2d 2 1 because a fire

cannot propagate backward to a site from which it came in the previous time

step when p, the probability per step of growing a new tree, is small as it is here.

Now, we can describe the forest fire model as a random pranching
process by using the IBL, i.e., the coordination number Z will be replaced

by Zi , where Zi labels the coordination number at site i which changes from

one site to another. In this description, one burning tree can ignite from 0 to

Zi 2 1 other trees, depending on how many of its Zj neighbor sites are
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occupied by trees; the fire density of trees and the average number of trees

ignited by one burning trees are given from equations (3.5) and (3.6) by

replacing Z 5 Zi , and we obtain

r t 5
1

Zi

2
1

Z 2
i 2 Zi

K 1 O (K 2) (13)

^ bi & 5 1 2
1

Zt 2 1
K 1 Zi O(K 2) (14)

the density of trees also can be derived self-consistently by using the knowl-

edge of exponents from percolation theory as

^ s & 5
p

f

1 2 r t

r t

} | pc 2 r t | 2 g (15)

where

pc 5 max
i 1 1

Zi 2 1 2
We conclude that using the inhomogeneous Bethe lattice to describe the

forest fire model is more realistic than the Bethe lattice, and gives large
probability for the subcritical case.
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